شرحدرسالأعدادالمركبة(ComplexNumbers)
مقدمةعنالأعدادالمركبة
الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهاعادةبالصيغةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة
خصائصالأعدادالمركبةالأساسية
الجمعوالطرح:عندجمعأوطرحعددينمركبين،نجمع/نطرحالأجزاءالحقيقيةوالأجزاءالتخيليةكلعلىحدةمثال:(3+2i)+(1-4i)=(3+1)+(2-4)i=4-2i
شرحدرسالأعدادالمركبةالضرب:نستخدمخاصيةالتوزيعمعتذكرأنi²=-1مثال:(2+3i)(1-2i)=2(1)+2(-2i)+3i(1)+3i(-2i)=2-4i+3i-6i²=2-i-6(-1)=8-i
شرحدرسالأعدادالمركبةالقسمة:نضربالبسطوالمقامفيمرافقالمقاملإزالةiمنالمقاممثال:(1+i)/(2-i)=[(1+i)(2+i)]/[(2-i)(2+i)]=(2+i+2i+i²)/(4-i²)=(1+3i)/5
شرحدرسالأعدادالمركبة
التمثيلالهندسيللأعدادالمركبة
يمكنتمثيلالعددالمركبa+biكنقطةفيالمستوىالإحداثي(مستوىالأعدادالمركبة)حيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي
شرحدرسالأعدادالمركبةالصيغةالقطبيةللأعدادالمركبة
يمكنالتعبيرعنالعددالمركبباستخدامالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهومعيارالعددالمركب(المسافةمنالأصل)-θهيالزاويةالتييصنعهامعالمحورالحقيقي
شرحدرسالأعدادالمركبةتطبيقاتالأعدادالمركبة
- فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
- فيمعالجةالإشاراتالرقمية
- فيميكانيكاالكم
- فيتحليلالدوالالرياضيةالمعقدة
خاتمة
الأعدادالمركبةتوسعمفهومنظامالأعدادالحقيقيةوتوفرأداةقويةلحلالعديدمنالمسائلالرياضيةوالعلميةالتيلايمكنحلهاباستخدامالأعدادالحقيقيةفقط.فهمالأعدادالمركبةأساسيللعديدمنالتخصصاتالعلميةوالهندسيةالمتقدمة.
شرحدرسالأعدادالمركبة